Utilization of convolutional neural network in image interpretation techniques for detecting kidney disease

Nanang Sulaksono, Kusworo Adi, Rizal Isnanto

Abstract


This research is conducted with deep learning for kidney stone disease detection including cysts, stones, normal, and tumors using axial computerized tomography (CT) scan images. The author uses augmentation, generative adversarial networks (GANs), original, and synthetic minority over-sampling technique (SMOTE) to classify kidney disease (cyst, stone, normal, and tumor). This study uses the public dataset nazmul0087 and primary data/data from the hospital, using convolutional neural network (CNN) models, namely augmentation, GANs, original, and SMOTE by training and testing. The results of the accuracy value of the training model (dataset nazmul0087) in the detection of kidney cysts, stones, tumors, and normal. The results of augmentation value are 99.93%, GANs 100%, original 100%, and SMOTE 99.93%. In the results of the training model, a very high accuracy value is obtained, with perfect results. The testing model's accuracy value in detecting kidney cysts, stones, tumors, and normal kidney tissue in the original dataset and hospital data. The results of augmentation value are 11.48%, GANs 17.96%, original 21.76%, and SMOTE 20.41%. In the results of the training model, the highest accuracy value is obtained in the original model. For the testing model to automatically diagnose kidney illness and obtain a high accuracy value, which can enhance patient outcomes and save health care costs, we advise using it in conjunction with the original model.

Keywords


Augmentation; Convolutional neural network; CT scan image; Disease kidney; Generative adversarial networks; Synthetic minority over-sampling technique

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i1.pp602-613

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats