Microarray gene expression classification: dwarf mongoose optimization with deep learning

Shyamala Gowri Balaraman, Anu H. Nair, Sanal Kumar

Abstract


The deoxyribonucleic acid (DNA) microarray model holds significant promise for revealing expression data from thousands of genes. It serves as a valuable tool for investigating gene expressions in diverse biological research fields. This study explores advancements in gene selection for cancer detection through artificial intelligence, with a focus on the challenge of extracting pertinent information from vast databases. The application of deep learning architecture in detecting chronic diseases and aiding medical decision-making has proven effective across various domains. Therefore, this study designs an enhanced microarray gene expression classification by utilizing a dwarf mongoose optimization with deep learning (MGEXC-DMODL) approach. The MGEXC-DMODL approach intends to classify the microarray gene expression (MGE). For this, the MGEXC-DMODL technique initially applies the wiener filtering (WF) technique to eradicate the noise. In addition, the MGEXC-DMODL technique employs a deep residual shrinkage network (DRSN) to learn feature vectors. Meanwhile, the convolutional autoencoder (CAE) model was executed for identifying and classifying the MGE data. Furthermore, the dwarf mongoose optimization (DMO)-based hyperparameter tuning is performed to enhance the detection outcomes of the CAE model. The investigational evaluation of the MGEXC-DMODL model is validated using a benchmark database. The comprehensive comparison outcome highlighted the betterment of the MGEXC-DMODL model over recent approaches. 

Keywords


Convolutional autoencoder; Deep learning; Deoxyribonucleic acid; Dwarf mongoose optimization; Microarray gene expression;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i1.pp213-221

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats