Exploring DenseNet architectures with particle swarm optimization: efficient tomato leaf disease detection

Cynthia Ayu Dwi Lestari, Syaiful Anam, Umu Sa’adah

Abstract


The critical challenge of tomato leaf disease demands effective solutions surpassing manual detection limitations, ensuring rapid intervention, optimal crop health, and maximizing yield for farmers. DenseNet, a convolutional neural network (CNN) architecture, is lauded for its adept handling of gradient flow issues by extensive interlayer connectivity. Its application holds significant promise in tackling the intricate task of identifying tomato leaf diseases. This research introduces an innovative methodology employing particle swarm optimization (PSO) to fine-tune the DenseNet architecture and hyperparameter. The proposed approach efficiently converges on optimal configurations encompassing parameters, such as the number of layers in dense blocks, growth rates, dropout rates, activation functions, and optimizers tailored for DenseNet. The DenseNet-PSO model achieves remarkable accuracy and precision in classifying various tomato leaf diseases, outperforming alternative architectures in total parameters, computational efficiency, and overall performance compared with six other architecture models. These outcomes elucidate DenseNet-PSO's efficacy in tomato leaf disease detection and demonstrate.

Keywords


Classification; Convolutional neural network; Deep learning; Hyperparameter; Image processing; Optimization;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i2.pp1377-1385

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats