ApDeC: a rule generator for alzheimer's disease prediction
Abstract
Artificial intelligence (AI) paved the way and helping hand for the medical practitioners in various aspects and early disease prediction is one among many. Interdisciplinary research studies on the early prediction of diseases are often analyzed based on the accuracy of the prediction model. But how early these diseases can be predicted will not be answered in many of the research studies unless they have a time series data. This work proposes a machine learning model, ApDeC which solves the above-mentioned problem by generating association rules for the early disease prediction of Alzheimer patients. The ApDeC model calculates the probability of occurrence of eleven Alzheimer disease prediction risk factors and identifies the combination of diseases that can lead to Alzheimer disease. The association rules will be generated by considering the observed combination of risk factors. The research introduces an innovative approach that helps in the early prediction of Alzheimer disease from the risk factors/symptoms. The results show the strong correlation of diabetes and blood pressure with Alzheimer disease.
Keywords
Alzheimer’s disease; Apriori algorithm; Artificial intelligence; Association rules; Machine learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i3.pp1772-1780
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).