Predicting enhanced diagnostic models: deep learning for multi-label retinal disease classification
Abstract
In this study, we assess three convolutional neural network (CNN) architectures—VGG16, ResNet50, and InceptionV3 for multi classification of fundus images in the retinal fundus multi-disease image dataset (RFMID2), comprising of 860 images. Focusing on diabetic retinopathy, exudation, and hemorrhagic retinopathy, we preprocessed the dataset for uniformity and balance. Using transfer learning, the models were adapted for feature extraction and fine-tuned to our multi-label classification task. Their performance was measured by subset accuracy, precision, recall, F1-score, hamming loss, and Jaccard score. VGG16 emerged as the top performer, with the highest subset accuracy (84.81%) and macro precision (95.83%), indicating its superior class distinction capabilities. ResNet50 showed commendable accuracy (79.75%) and precision (86.70%), whereas InceptionV3 lagged with lower accuracy (66.67%) and precision (81.21%). These findings suggest VGG16’s depth offers advantages in multi-label classification, highlighting InceptionV3’s limitations in complex scenarios. This analysis helps optimize CNN architecture selection for specific tasks, suggesting future exploration of dataset variability, ensemble methods, and hybrid models for improved performance.
Keywords
Classification; Deep learning; Medical imaging; Multi-label; Prediction models; Retinal disease
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i1.pp54-61
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).