Novel preemptive intelligent artificial intelligence-model for detecting inconsistency during software testing
Abstract
The contribution of artificial intelligence (AI)-based modelling is highly significant in automating the software testing process; thereby enhancing the cost, resources, and productivity while performing testing. Review of existing AI-models towards software testing showcases yet an open-scope for further improvement as yet the conventional AI-model suffers from various challenges especially in perspective of test case generation. Therefore, the proposed scheme presents a novel preemptive intelligent computational framework that harnesses a unique ensembled AI-model for generating and executing highly precise and optimized test-cases resulting in an outcome of adversary or inconsistencies associated with test cases. The ensembled AI-model uses both unsupervised and supervised learning approaches on publicly available outlier dataset. The benchmarked outcome exhibits supervised learning-based AI-model to offer 21% of reduced error and 1.6% of reduced processing time in contrast to unsupervised scheme while performing software testing.
Keywords
Artificial intelligence; Automation; Error; Inconsistency; Software testing
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i3.pp1781-1789
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).