Enhancing financial cybersecurity via advanced machine learning: analysis, comparison
Abstract
The financial sector is a prime target for cyber-attacks due to the sensitive nature of the data it handles. As the frequency and sophistication of cyber threats continue to rise, implementing effective security measures becomes paramount. In this paper we provide a comprehensive comparison of six prominent machine learning techniques utilized in the financial industry for cyber-attack prevention. The study aims to identify the best-performing model and subsequently compares its performance with a proposed model tailored to the specific challenges faced by financial institutions. This paper looks at using advanced machine learning methods to make cybersecurity stronger for financial institutions. The work explores the deployment of cutting-edge machine learning algorithms - logistic regression, random forest, support vector machines (SVM), K-nearest neighbour (KNN), naïve Bayes, extreme gradient boosting (XGBoost), and deep learning technique (Dense Layer) - to fortify the cybersecurity framework within financial institutions. Through a meticulous analysis and comparative study, we explore the efficacy, scalability, and practical implementation aspects of various machine learning algorithms tailored to address cybersecurity concerns. Additionally, we propose a framework for integrating the most effective machine learning models into existing cybersecurity infrastructure, offering insights into bolstering resilience against evolving cyber threats. In our comparison, XGBoost exhibited outstanding performance with an accuracy of 95%.
Keywords
Cybersecurity; Deep learning; Extreme gradient boosting; Machine learning; Malware;
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i2.pp1281-1289
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).