Optimizing real-time data preprocessing in IoT-based fog computing using machine learning algorithms
Abstract
In the era of the internet of things (IoT), managing the massive influx of data with minimal latency is crucial, particularly within fog computing environments that process data close to its origin. Traditional methods have been inadequate, struggling with the high variability and volume of IoT data, which often leads to processing inefficiencies and poor resource allocation. To address these challenges, this paper introduces a novel machine learning-driven approach named real-time data preprocessing in IoT-based fog computing using machine learning algorithms (IoT-FCML). This method dynamically adapts to the changing characteristics of data and system demands. The implementation of IoT-FCML has led to significant performance enhancements: it reduces latency by approximately 0.26%, increases throughput by up to 0.3%, improves resource efficiency by 0.20%, and decreases data privacy overhead by 0.64%. These improvements are achieved through the integration of smart algorithms that prioritize data privacy and efficient resource use, allowing the IoT-FCML method to surpass traditional preprocessing techniques. Collectively, the enhancements in processing speed, adaptability, and data security represent a substantial advancement in developing more responsive and efficient IoT-based fog computing infrastructures, marking a pivotal progression in the field.
Keywords
Data privacy; Dynamic adaptability; IoT fog computing; Latency reduction; Machine learning algorithms; Real-time data preprocessing; Resource efficiency
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i3.pp1900-1909
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).