Ensemble model-based arrhythmia classification with local interpretable model-agnostic explanations
Abstract
Arrhythmia can lead to heart failure, stroke, and sudden cardiac arrest. Prompt diagnosis of arrhythmia is crucial for appropriate treatment. This analysis utilized four databases. We utilized seven machine learning (ML) algorithms in our work. These algorithms include logistic regression (LR), decision tree (DT), extreme gradient boosting (XGB), K-nearest neighbors (KNN), naïve Bayes (NB), multilayer perceptron (MLP), AdaBoost, and a bagging ensemble of these approaches. In addition, we conducted an analysis on a stacking ensemble consisting of XGB and bagging XGB. This study examines various arrhythmia detection techniques using both a single base dataset and a composite dataset. The objective is to identify the optimal model for the combined dataset. This study aims to evaluate the efficacy of these models in accurately categorizing normal (N) and abnormal (A) heartbeats as binary classes. The empirical findings demonstrated that the stacking ensemble approach exhibited superior accuracy when used with the combined dataset. Arrhythmia classification models rely on this as a crucial component. The binary classification achieved an accuracy of 98.61%, a recall of 97.66%, and a precision of 97.77%. Subsequently, the local interpretable model-agnostic explanations (LIME) technique is employed to assess the prediction capability of the model.
Keywords
Arrhythmia; Electrocardiogram; Extreme gradient boosting local interpretable model-agnostic explanations; Machine learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i3.pp2012-2025
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).