Hybrid N-gram-based framework for payload distributed denial of service detection and classification

Andi Maslan, Cik Feresa Mohd Foozy, Kamaruddin Malik Bin Mohamad, Abdul Hamid, Dedy Fitriawan, Joni Hasugian

Abstract


There are three primary approaches to DDoS detection: anomaly-based, pattern-based, and heuristic-based. The heuristic-based method integrates both anomaly- and pattern-based techniques. However, existing DDoS detection systems face challenges in performing HTTP payload-level analysis, mainly due to high false positive rates and insufficient granularity in current datasets. To address this, the study introduces a novel heuristic approach based on a hybrid N-Gram model. This hybrid combines two components: CSDPayload+N-Gram and CSPayload+N-Gram. CSDPayload represents the gap (measured via Chi-Square Distance) between a given payload and normal traffic payloads, while CSPayload reflects the similarity (measured via Cosine Similarity) between them. These metrics form a new feature set evaluated using three datasets: CIC2019, MIB2016, and H2N-Payload. The methodology begins with packet extraction and conversion of TCP/IP traffic—specifically HTTP traffic—into hexadecimal payloads. N-Gram analysis (from 1-Gram to 6-Gram) is then applied to these payloads. For each N-Gram, frequency counts are computed, followed by calculations of Chi-Square Distance (CSD), Cosine Similarity (CS), and Pearson’s Chi-Square test to classify payloads as either benign or malicious. Subsequently, feature selection is performed using weight correlation, and the resulting features are fed into three machine learning classifiers: Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Neural Network. Experimental results demonstrate high detection accuracy, particularly in the 4-Gram feature category: Neural Network achieves 99.65%, KNN 95.14%, and SVM 99.73% accuracy on average.

Keywords


Chi square; Cosine similarity; DDoS; Network; Payload

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i6.pp4763-4774

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Andi Maslan, Cik Feresa Mohd Foozy, Kamaruddin Malik Bin Mohamad, Abdul Hamid, Dedy Fitriawan, Joni Hasugian

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats