Boosting industrial internet of things intrusion detection: leveraging machine learning and feature selection techniques

Lahcen Idouglid, Said Tkatek, Khalid Elfayq

Abstract


The rapid integration of industrial internet of things (IIoT) technologies into Industry 4.0 has revolutionized industrial efficiency and automation, but it has also exposed critical vulnerabilities to cyber threats. This paper delves into a comprehensive evaluation of machine learning (ML) classifiers for detecting anomalies in IIoT environments. By strategically applying feature selection techniques, we demonstrate significant enhancements in both the accuracy and efficiency of these classifiers. Our findings reveal that feature selection not only boosts detection rates but also minimizes computational demands, making it a cornerstone for developing resilient intrusion detection systems (IDS) tailored for Industry 4.0. The insights garnered from this study pave the way for deploying more robust security frameworks, safeguarding the integrity and reliability of IIoT infrastructures in modern industrial settings.

Keywords


Anomaly detection; Feature selection; Industrial internet of things security; Industry 4.0; Intrusion detection; Machine learning;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i2.pp1232-1241

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats