Educational data mining approach for predicting student performance and behavior using deep learning techniques

Muniappan Ramaraj, Sabareeswaran Dhendapani, Jothish Chembath, Selvaraj Srividhya, Nainan Thangarasu, Bhaarathi Ilango

Abstract


Educational Data Mining (EDM) uncovers insights from large datasets collected from various educational platforms, such as online learning systems, student information databases, and classroom tools. EDM helps educators identify hidden patterns that improve teaching strategies, personalize learning experiences, and predict student performance. Predicting student success has become a key focus of EDM, allowing institutions to implement targeted interventions and personalized support. The dataset included academic achievement grades from 1,001 students enrolled in various courses during the fall semester across multiple years, to demonstrate how proposed models provide more accurate predictions compared to traditional machine learning methods. Models such as YOLO, Fast R-CNN, Artificial Neural Networks (ANNs), and Long Short-Term Memory (LSTM) networks are used to capture complex, non-linear relationships within the data. The comparative analysis shows that these deep learning models significantly outperform traditional techniques, such as decision trees and support vector machines (SVMs). The results indicate that proposed method offers improved predictive accuracy, enabling educational institutions to identify at-risk students and deliver tailored interventions. This study highlights the potential of enhanced method to transform personalized education and enhance student success by better understanding individual learning needs and behaviors.

Keywords


Artificial neural networks; Deep learning; Educational data mining; Long short-term memory; Predictive analytics; Student performance prediction

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i5.pp%25p

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muniappan Ramaraj, Sabareeswaran Dhendapani, Jothish Chembath, Selvaraj Srividhya, Nainan Thangarasu, Bhaarathi Ilango

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats