Object detection for indoor mobile robot: deep learning approaches review

Hind Messbah, Mohamed Emharraf, Mohamed Saber

Abstract


Efficient object detection is crucial for enabling autonomous indoor robot navigation. This paper reviews current methodologies and challenges in the field, with a focus on deep learning-based techniques. Methods like you only look once (YOLO), region-based convolutional neural networks (R-CNN), and Faster R-CNN are explored for their suitability in real-time detection in dynamic indoor environments. Deep learning models are emphasized for their ability to improve detection accuracy and adaptability to varying conditions. Key performance metrics such as accuracy, speed, and scalability across different object types and environmental scenarios are discussed. Additionally, the integration of object detection with navigation systems is examined, highlighting the importance of accurate perception for safe and effective robot movement. This study provides insights into future research directions aimed at advancing the capabilities of indoor robot navigation through enhanced deep learning-based object detection techniques.


Keywords


Deep learning; Indoor robot navigation; Object detection; Real time; Sensor fusion; You only look once

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i5.pp3520-3527

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Institute of Advanced Engineering and Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats