Hybridized deep learning model with novel recommender for predicting criticality state of patient using MIMIC-IV dataset

Sarika Khope, Deepali Kotambkar, Rama Vasantha Adiraju, Smita Suhas Battalwar

Abstract


The contribution of machine learning towards prediction of critical state of patient is the prime focus of the current study. The review of current approaches of machine learning has been witnessed with various shortcomings. Hence, the proposed study adopts medical information mart for intensive care (MIMIC-IV) dataset in order to develop a novel analytical model that can predict the criticality state of patient in their next visit. The model has been designed by hybridizing convolution neural network (CNN) and long short-term memory (LSTM) which takes the discrete input of hospital and individual patient information in each visit. The concatenated feature is then subjected to a newly introduced recommender module which offers implicit feedback by assigning a ranking score. The final predictive outcome of study offers criticality rank. The study model is benchmarked with existing machine learning approaches to find 54% of increased accuracy and 70% of reduced processing time.

Keywords


Convolution neural network; Criticality state; Long short-term memory; Machine learning; MIMIC-IV

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i5.pp%25p

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Sarika Khope, Deepali Kotambkar, Rama Vasantha Adiraju, Smita Suhas Battalwar

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats