Unveiling critical features for failure prediction in green internet of things applications

Ouiam Khattach, Omar Moussaoui, Mohammed Hassine

Abstract


The rapid growth of the green internet of things (GIoT) in recent years signifies a transformative shift in internet of things (IoT) solution development. This evolution is driven by technological advancements, heightened environmental awareness, and a global imperative to combat climate change. Ensuring the reliability of GIoT applications is crucial for their success. This study identifies critical features for predicting IoT device failures, enabling early detection and intervention. Using datasets from industry, energy, and agriculture sectors, we employ a feature selection strategy to analyze extensive data from diverse GIoT deployments. Our analysis identifies significant features and integrates key insights from existing literature. Our findings support enhanced predictive maintenance strategies, reduced downtime, and improved overall performance of sustainable IoT solutions.

Keywords


Failure prediction; Features selection; Green internet of things; Internet of things; Predictive maintenance

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i5.pp%25p

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Ouiam Khattach, Omar Moussaoui, Mohammed Hassine

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats