Classification of Atrial Arrhythmias using Neural Networks

Jai Utkarsh, Raju Kumar Pandey, Shrey Kumar Dubey, Shubham Sinha, S. S. Sahu

Abstract


Electrocardiogram (ECG) is an important tool used by clinicians for successful diagnosis and detection of Arrhythmias, like Atrial Fibrillation (AF) and Atrial Flutter (AFL). In this manuscript, an efficient technique of classifying atrial arrhythmias from Normal Sinus Rhythm (NSR) has been presented. Autoregressive Modelling has been used to capture the features of the ECG signal, which are then fed as inputs to the neural network for classification. The standard database available at Physionet Bank repository has been used for training, validation and testing of the model. Exhaustive experimental study has been carried out by extracting ECG samples of duration of 5 seconds, 10 seconds and 20 seconds. It provides an accuracy of 99% and 94.3% on training and test set respectively for 5 sec recordings. In 10 sec and 20 sec samples it shows 100% accuracy. Thus, the proposed method can be used to detect the arrhythmias in a small duration recordings with a fairly high accuracy.

Keywords


Atrial Fibrillation, Atrial Flutter, Autoregressive Modelling, ECG, Neural Networks

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v7.i2.pp90-94

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats