Comparison of meta-heuristic algorithms for fuzzy modelling of COVID-19 illness’ severity classification
Abstract
The world health organization (WHO) proclaimed the COVID-19, commonly known as the coronavirus disease 2019, was a pandemic in March 2020. When people are in close proximity to one another, the virus spreads mostly through the air. It causes some symptoms in the affected person. COVID-19 symptoms are quite variable, ranging from none to severe sickness. As a result, the fuzzy method is seen favourably as a tool for determining the severity of a person’s COVID-19 sickness. However, when applied to a large situation, manually generating a fuzzy parameter is challenging. This could be because of the identification of a large number of fuzzy parameters. A mechanism, such as an automatic procedure, is consequently required to identify the right fuzzy parameters. The metaheuristic algorithm is regarded as a viable strategy. Five meta-heuristic algorithms were analyzed and utilized in this article to classify the severity of COVID-19 sickness data. The performance of the five meta-heuristic algorithms was evaluated using the COVID-19 symptoms dataset. The COVID-19 symptom dataset was created in accordance with WHO and the Indian ministry of health and family welfare criteria. The findings provide the average classification accuracy for each approach.
Keywords
COVID-19; Differential evolution; Fuzzy logic; Genetic algorithm; Meta-heuristic; Particle swarm optimization; TLBO Algorithm
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v11.i1.pp50-64
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).