A real-time data association of internet of things based for expert weather station system

Indrabayu Indrabayu, Intan Sari Areni, Anugrayani Bustamin, Rizka Irianty


The wind carries moisture into an atmosphere and hot or cold air into a climate, affecting weather patterns. Knowing where the wind is coming from gives essential insight into what kind of temperatures are to be expected. However, the wind is affected by spatial and temporal variabilities, thus making it difficult to predict. This study focuses on finding data associations from the weather station installed at Hasanuddin University Campus based on internet of things (IoT) using Raspberry Pi as a gateway that associated all the meteorological data from sensors. The generation of association rules compares the Apriori and FP-growth algorithms to determine relations among itemsets. The results show that high humidity and warm temperature tend to associate with a westerly wind and occur at night. In contrast, conditions with less humid and moderate temperatures tend to have southerly and southeasterly wind.


association rules; expert system; internet of things; weather station;

Full Text:


DOI: http://doi.org/10.11591/ijai.v11.i2.pp432-439


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats