An efficient convolutional neural network-based classifier for an imbalanced oral squamous carcinoma cell dataset

Usha Manasi Mohapatra, Sushreeta Tripathy


Imbalanced datasets pose a major challenge for the researchers while addressing machine learning tasks. In these types of datasets, samples of different classes are not in equal proportion rather the gap between the numbers of individual class samples is significantly large. Classification models perform better for datasets having equal proportion of data tuples in both the classes. But, in reality, the medical image datasets are skewed and hence are not always suitable for a model to achieve improved classification performance. Therefore, various techniques have been suggested in the literature to overcome this challenge. This paper applies oversampling technique on an imbalanced dataset and focuses on a customized convolutional neural network model that classifies the images into two categories: diseased and non-diseased. Outcome of the proposed model can assist the health experts in the detection of oral cancer. The proposed model exhibits 99% accuracy after data augmentation. Performance metrics such as precision, recall and F1-score values are very close to 1. In addition, statistical test is performed to validate the statistical significance of the model. It has been found that the proposed model is an optimised classifier in terms of number of network layers and number of neurons.


Class imbalance; Convolutional neural network; Medical images; Oral squamous cell carcinoma; Oversampling;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats