Sophisticated face mask dataset: a novel dataset for effective coronavirus disease surveillance

Sheikh Burhan Ul Haque, Mohd Hanief Wani


Efficient and accurate coronavirus disease (COVID-19) surveillance necessitates robust identification of individuals wearing face masks. This research introduces the sophisticated face mask dataset (SFMD), a comprehensive compilation of high-quality face mask images enriched with detailed annotations on mask types, fits, and usage patterns. Leveraging cutting-edge deep learning models—EfficientNet-B2, ResNet50, and MobileNet-V2—, we compare SFMD against two established benchmarks: the real-world masked face dataset (RMFD) and the masked face recognition dataset (MFRD). Across all models, SFMD consistently outperforms RMFD and MFRD in key metrics, including accuracy, precision, recall, and F1 score. Additionally, our study demonstrates the dataset's capability to cultivate robust models resilient to intricate scenarios like low-light conditions and facial occlusions due to accessories or facial hair.


Coronavirus disease; Deep learning; Face detection; Face mask detection; Transfer learning;

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats