The performance analysis of hyper-heuristics algorithms over examination timetabling problems
Abstract
In general, uncapacitated exam timetabling is conducted manually, which can be time-consuming. Many studies aim to automate and optimize uncapacitated exam timetabling. However, pinpointing the most efficient algorithm is challenging since most studies assert that their algorithms surpass previous ones. To identify the optimal algorithm, this research evaluates the performance of four algorithms: Hill climbing (HC), simulated annealing (SA), great deluge (GD), and tabu search (TS) in addressing the exam timetabling problem. The Kempe chain operator’s influence on optimization solutions is also examined. A simple random method is employed to select the low-level heuristic (LLH). The Carter (Toronto) dataset served as the test material, with each algorithm undergoing 200,000 iterations for comparison. The results indicate that the TS algorithm is superior, providing the best solution in 13 instances. The use of a tabu list enhanced the search process’s efficiency by preventing redundant modifications. The Kempe chain LLH exhibited a tendency towards achieving better solutions.
Keywords
Exam timetabling problem; Great deluge; Hyper-heuristics; Simulated annealing; Tabu search
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v13.i2.pp2155-2164
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).