Speaker identification under noisy conditions using hybrid convolutional neural network and gated recurrent unit

Wondimu Lambamo Anito, Ramasamy Srinivasagan, Worku Jifara, Ali Alzahrani


Speaker identification is biometrics that classifies or identifies a person from other speakers based on speech characteristics. Recently, deep learning models outperformed conventional machine learning models in speaker identification. Spectrograms of the speech have been used as input in deep learning-based speaker identification using clean speech. However, the performance of speaker identification systems gets degraded under noisy conditions. Cochleograms have shown better results than spectrograms in deep learning-based speaker recognition under noisy and mismatched conditions. Moreover, hybrid convolutional neural network (CNN) and recurrent neural network (RNN) variants have shown better performance than CNN or RNN variants in recent studies. However, there is no attempt conducted to use a hybrid CNN and enhanced RNN variants in speaker identification using cochleogram input to enhance the performance under noisy and mismatched conditions. In this study, a speaker identification using hybrid CNN and the gated recurrent unit (GRU) is proposed for noisy conditions using cochleogram input. VoxCeleb1 audio dataset with real-world noises, white Gaussian noises (WGN) and without additive noises were employed for experiments. The experiment results and the comparison with existing works show that the proposed model performs better than other models in this study and existing works.


Cochleogram; Convolutional neural network; Gated recurrent unit; Signal to noise ratio; Speaker identification

Full Text:


DOI: http://doi.org/10.11591/ijai.v13.i1.pp1050-1062


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats