An enhanced domain ontology model of database course in computing curricula

Nur W. Rahayu, Ridi Ferdiana, Sri S. Kusumawardani


The ACM/IEEE Computing Curricula 2020 includes the study of relational databases in four of its six disciplines. However, a domain ontology model of multidisciplinary database course does not exist. Therefore, the current study aims to build a domain ontology model for the multidisciplinary database course. The research process comprises three phases: a review of database course contents based on the ACM/IEEE Computing Curricula 2020, a literature review of relevant domain ontology models, and a design research phase using the NeOn methodology framework. The ontology building involves the ontology reuse and reengineering of existing models, along with the construction of some classes from a non-ontological resource. The approach to ontology reuse and reengineering demonstrates ontology reusability. The final domain ontology model is then evaluated using two ontology syntactic metrics: Relationship Richness and Information Richness. These metrics reflect the diversity of relationships and the breadth of knowledge in the model, respectively. In conclusion, the current research contributes to the Computing Curricula by providing an ontology model for a multidisciplinary database course. The model, developed through ontology reuse and reengineering and the integration of non-ontological resources, exhibits more diverse relationships and represents a broader range of knowledge.


Multidisciplinary database course; Non-ontological resource; Ontology reuse and reengineering; Ontology syntactic metrics; Relational database structured query language

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats