Revolutionizing recommendations a survey: a comprehensive exploration of modern recommender systems
Abstract
The rapid proliferation of digital information and online services has fundamentally reshaped user interactions with websites, necessitating the evolution of recommender systems. These systems, crucial in domains such as e-commerce, education, and scientific research, serve to enhance user engagement and satisfaction through personalized recommendations. However, it comes up with new challenges, including information overload, prompting the development of recommender systems that can efficiently navigate this vast group to offer more personalized and relevant suggestions. This survey paper explores the dynamic opinion of recommendation systems, addressing the limitations of traditional approaches, the emergence of deep learning models, and the extended potential for additional data. By investigating various recommendation systems and the evolving role of deep learning, this paper illuminates the path toward more accurate, personalized, and effective recommender systems, considering challenges like sparse data and improved context-based recommendations. The study encompasses three primary recommendation approaches: collaborative filtering, content-based filtering, and hybrid systems. It further investigates into the transformation brought about by deep learning models, showcasing how these models intricate user-item interactions. This survey offers a comprehensive exploration of recommendation systems and their advancements in the digital era, providing insights into the future of personalized content delivery.
Keywords
Collaborative filtering; Content-based filtering; Deep learning; Hybrid systems; Recommendation system
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i4.pp2579-2589
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Institute of Advanced Engineering and Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).