Brain tumor segmentation and classification using artificial hummingbird optimization algorithm

Radhakrishnan Karthikeyan, Arappaleeswaran Muruganandham

Abstract


The time and medical personnel experience are the only factors that determine whether brain tumors can be manually identified from numerous magnetic resonance imaging (MRI) pictures in medical practice. Many frameworks based on brain tumors are diagnosed using both deep learning and machine learning. This study proposes a Wasserstein deep convolutional generative adversarial network (WDCGAN) optimized using the artificial hummingbird optimization algorithm (AHBOA) for brain tumor segmentation and classification (SCBT). First, the BraTS dataset is used to gather the input data. Then it is pre-processed consuming adaptive self guided filtering (ASGF) and the result is segmented using fuzzy possibilistic C-ordered mean clustering (FPCOMC). After that, features are extracted using the dual tree complex discrete wavelet transform (DT-CDWT). The characteristics of feature extracted are fed to WDCGAN for effectively categorize the various parameters. Then the proposed MATLAB is used to implement the technique, and the performance measurements like F1-score, accuracy, error rate, precision, sensitivity, mean square error, receiver operating characteristic (ROC), and computational time are analyzed. The WDCGAN-AHBOA-SCBT method significantly improves precision in SCBT by integrating adaptive optimization strategies, resulting in 32.18, 32.75, and 32.90% higher precision in contrast to current techniques. This demonstrates that the approach is more accurate and effective, making it a reliable tool for medical diagnosis.

Keywords


Adaptive self-guided filtering; Adversarial network; Artificial hummingbird; Brain tumor detection; Dual tree complex discrete wavelet transform; Fuzzy possibilistic C-ordered

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v15.i1.pp429-442

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Radhakrishnan Karthikeyan, Arappaleeswaran Muruganandham

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats