Exploring bibliometric trends in speech emotion recognition (2020-2024)
Abstract
Speech Emotion Recognition (SER) is crucial in various real-world applications, including healthcare, human-computer interaction, and affective computing. By enabling systems to detect and respond to human emotions through vocal cues, SER enhances user experience, supports mental health monitoring, and improves adaptive technologies. This research presents a bibliometric analysis of SER based on 68 articles from 2020 to early 2024. The findings show a significant increase in publications each year, reflecting the growing interest in SER research. The analysis highlights various approaches in preprocessing, data sources, feature extraction, and emotion classification. India and China emerged as the most active contributors, with external funding, particularly from the NSFC, playing a significant role in the advancement of SER research. SVM remains the most widely used classification model, followed by KNN and CNN. However, several critical challenges persist, including inconsistent data quality, cross-linguistic variability, limited emotional diversity in datasets, and the complexity of real-time implementation. These limitations hinder the generalizability and scalability of SER systems in practical environments. Addressing these gaps is essential to enhance SER performance, especially for multimodal and multilingual applications. This study provides a detailed understanding of SER research trends, offering valuable insights for future advances in speech-based emotion recognition.
Keywords
Audio features; Classification model; Emotions; Preprocessing; Speech emotion recognition;
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v14.i4.pp3421-3434
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Institute of Advanced Engineering and Science
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).