Contract-based federated learning framework for intrusion detection system in internet of things networks

Yuris Mulya Saputra, Divi Galih Prasetyo Putri, Jimmy Trio Putra, Budi Bayu Murti, Wahyono Wahyono

Abstract


A plethora of national vital infrastructures connected to internet of things (IoT) networks may trigger serious data security vulnerabilities. To address the issue, intrusion detection systems (IDS) were investigated where the behavior and traffic of IoT networks are monitored to determine whether malicious attacks or not occur through centralized learning on a cloud. Nonetheless, such a method requires IoT devices to transmit their local network traffic data to the cloud, thereby leading to data breaches. This paper proposes a federated learning (FL)-based IDS on IoT networks aiming at improving the intrusion detection accuracy without privacy leakage from the IoT devices. Specifically, an IoT service provider can first motivate IoT devices to participate in the FL process via a contract-based incentive mechanism according to their local data. Then, the FL process is executed to predict IoT network traffic types without sending IoT devices’ local data to the cloud. Here, each IoT device performs the learning process locally and only sends the trained model to the cloud for the model update. The proposed FL-based system achieves a higher utility (up to 44%) than that of a non-contract-based incentive mechanism and a higher prediction accuracy (up to 3%) than that of the local learning method using a real-world IoT network traffic dataset.

Keywords


Contract theory; Federated learning; Incentive mechanism; Internet of things; Network security

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i4.pp3324-3333

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Institute of Advanced Engineering and Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats