Automated ergonomic sitting postures detection for office workstation using XGBoost method
Abstract
Sedentary office work increases musculoskeletal risk, underscoring the need for non-intrusive, real-time posture monitoring. This study presents a computer vision approach that classifies ergonomic versus non-ergonomic sitting postures using upper body key points extracted by MoveNet thunder. Images from 30 participants were captured from frontal and side views, and labeled according to SNI 9011:2021 criteria. Seventeen key points were detected, with head-to-hip landmarks retained, then normalized and centered. Three classifiers—adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), and a multi-layer perceptron (MLP)—were trained and evaluated with 10-fold stratified cross-validation. XGBoost achieved the best performance, with accuracy 93.0%±1.9%, precision 94.6%, recall 91.4%, F1-score 92.9%, and area under the receiver operating characteristic curve (ROC-AUC) 0.974±0.010, outperforming MLP and AdaBoost. The method supports privacy-preserving, on-device inference and is suitable for integration into smart office systems to reduce exposure to high-risk postures. Limitations include controlled capture conditions and an upper body focus; future work will expand posture taxonomy and real-world deployment.
Keywords
Computer vision; Ergonomic sitting posture; Machine learning; MoveNet; Musculoskeletal disorder
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v15.i1.pp506-514
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Theresia Amelia Pawitra, Farida Djumiati Sitania, Anindita Septiarini, Hamdani

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).