Automated menu planning for pregnancy based on nutrition and budget using population-based optimization method

Diva Kurnianingtyas, Nathan Daud, Kohei Arai, Indriati Indriati, Marji Marji

Abstract


Nutritional fulfilment during pregnancy depends on the budget. Meanwhile, nutrition is needed during pregnancy to keep the mother and fetus healthy. Therefore, this study aims to assist maternal nutrition planning by using population-based optimization methods such as genetic algorithm (GA), particle swarm optimization (PSO), duck swarm algorithm (DSA), and whale optimization (WO) according to their nutritional needs at minimum cost. Additionally, this study compares the method performance to find the best method. There are 55 foods obtained from previous studies divided into five groups: staple food (SF), vegetables (VG), plant-source food (PS), animal-source food (AS), and complementary (CP). The model evaluation results show that GA's performance differed significantly from other models because it obtained the highest fitness by 439.73 and more variation in fitness results. Three models other than GA have no significant difference, but DSA performance obtained a superior fitness of 367.18. Furthermore, optimization methods must be combined with other artificial intelligence methods to develop innovative technology to support maternal nutrition and prevent stunting.

Keywords


Artificial intelligence; Evolutionary algorithm; Food technology; Multi-objective optimization; Optimization

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v14.i5.pp3483-3492

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Institute of Advanced Engineering and Science

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats