Scalable resume screening using large language model Meta AI version 3

Asmita Deshmukh, Anjali Raut, Vedant Deshmukh

Abstract


This research paper explores the use of large language model Meta AI 3 (LLaMA 3) for automating the resume screening process. Traditional resume screening methods that rely on keyword searching and human review can be inefficient, biased, and fail to identify qualified candidates. LLaMA 3, trained on large-scale text datasets, has the potential to accurately analyze resumes by understanding context and semantic details beyond simple keyword matching.The study presents a system that converts resume PDFs to text, inputs the text along with the job description into the LLaMA 3 model, and generates a ranked list of candidates with reasoning for their job fit. This discusses the data preparation, model setup, and performance evaluation of this system. Results show LLaMA 3 can rapidly process batches of resumes while reducing human bias in the screening process. The system aims to streamline hiring by automating the initial resume screening stage to surface top candidates for further in-depth evaluation. Key benefits include improved accuracy in identifying relevant skills, reduced bias compared to human screeners, and significant time savings for recruiters. The paper also examines ethical considerations around using AI for hiring decisions. Overall, this work demonstrates the promising application of large language models (LLMs) like LLaMA 3 to transform and enhance resume screening practices.

Keywords


Automated recruitment; Large language models; LLaMA 3; Natural language processing; Resume screening

Full Text:

PDF


DOI: http://doi.org/10.11591/ijai.v15.i1.pp953-961

Refbacks

  • There are currently no refbacks.


Copyright (c) 2026 Asmita Deshmukh, Anjali Raut, Vedant Deshmukh

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES).

View IJAI Stats