Adaptive transformer architecture for scalable earth observation via hyperspectral imaging
Abstract
Hyperspectral Image (HSI) classification is one of the critical processes involved in remote sensing application that plays a crucial role towards earth observation. Owing to complex spatial-spectral relationship and high dimensionality, it is quite a challenging task to subject HSI content to conventional data analytics or existing methods. Hence, the proposed study introduces a novel computational model known as Adaptive Spectra-Spatial Transformer (ASST) to address these ongoing challenges and shortcoming of existing Artificial Intelligence (AI) based modelling. The proposed model contributes towards a novel transformer-based architecture where a distinct spectral-spatial attention method has been used with transformer encoder. This novel combination facilitates highly adaptive and contextually enriched feature extraction. Tested on universally standard HSI dataset of Pavia University, the proposed ASST model has been benchmarked with notice 97.26% of overall accuracy and faster processing duration computed via training and response time in contrast to frequently adopted ML and DL models. The accomplished study outcomes truly exhibited highly improved feature representation as well as robust performance against class imbalance problems towards scalable data analysis of HSI contents for earth observation.
Keywords
Artificial intelligence; Classification; Deep learning; Earth observation; Hyperspectral image; Machine learning
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v15.i1.pp824-830
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Devendra Kumar Saragoor Madanayaka, Devanathan Muthukrishnan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES).