Extractive Based Single Document Text Summarization Using Clustering Approach

Pankaj Kailas Bhole, A. J. Agrawal


Text  summarization is  an  old challenge  in  text  mining  but  in  dire  need  of researcher’s attention in the areas of computational intelligence, machine learning  and  natural  language  processing. We extract a set of features from each sentence that helps identify its importance in the document. Every time reading full text is time consuming. Clustering approach is useful to decide which type of data present in document. In this paper we introduce the concept of k-mean clustering for natural language processing of text for word matching and in order to extract meaningful information from large set of offline documents, data mining document clustering algorithm are adopted.


K-mean clustering,Stemming,Term Frequency,Text summarization

Full Text:


DOI: http://doi.org/10.11591/ijai.v3.i2.pp73-78


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats