Automatic cerebrovascular segmentation methods-a review

Fatma Taher, Neema Prakash


Cerebrovascular diseases are one of the serious causes for the increase in mortality rate in the world which affect the blood vessels and blood supply to the brain. In order, diagnose and study the abnormalities in the cerebrovascular system, accurate segmentation methods can be used. The shape, direction and distribution of blood vessels can be studied using automatic segmentation. This will help the doctors to envisage the cerebrovascular system. Due to the complex shape and topology, automatic segmentation is still a challenge to the clinicians. In this paper, some of the latest approaches used for segmentation of magnetic resonance angiography images are explained. Some of such methods are deep convolutional neural network (CNN), 3dimentional-CNN (3D-CNN) and 3D U-Net. Finally, these methods are compared for evaluating their performance. 3D U-Net is the better performer among the described methods.


Cerebrovascular; CNN; MRA; Segmentation; U-Net

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938 
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

View IJAI Stats