A neural network combined with sliding mode controller for the two-wheel self-balancing robot
Abstract
This article presents the sliding control method combined with the selfadjusting neural network to compensate for noise to improve the control system's quality for the two-wheel self-balancing robot. Firstly, the dynamic equations of the two-wheel self-balancing robot built by Euler–Lagrange is the basis for offering control laws with a neural network of noise compensation. After disturbance-compensating, the sliding mode controller is applied to control quickly the two-wheel self-balancing robot reached the desired position. The stability of the proposed system is proved based on the Lyapunov theory. Finally, the simulation results will confirm the effectiveness and correctness of the control method suggested by the authors.
Keywords
Lyapunov theory; Neuron network; Sliding mode control; Two-wheeled self-balancing
Full Text:
PDFDOI: http://doi.org/10.11591/ijai.v10.i3.pp592-601
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
IAES International Journal of Artificial Intelligence (IJ-AI)
ISSN/e-ISSN 2089-4872/2252-8938
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).